Absorption of Radiation due to Collisions of Hydrogen Molecules with Helium Atoms at High Temperatures

Xiaoping Li, Anirban Mandal, Evangelos Miliordos, Katharine L. C. Hunt, Martin Abel and Lothar Frommhold

Photo credits: NASA. ESA. and H. Richer (University of British Columbia). HST ACS/WFC. D. Verschatse. Antilhue

Planetary nebula NGC 2440 around a very hot white dwarf star, T = 200,000 K

H. Bond (STSci), R. Ciardullo (PSU), WFPC2, HST, NASA

Very Cool White Dwarf Stars

Van Maanen's Star ESO Online Digitized Sky Survey

> ~10 billion years old 14.13 light years away Mass = 0.7 * Sun Luminosity = 0.000182 * Sun Diameter = 0.013 * Sun (in constellation Pisces)

White Dwarf Stars in Globular Cluster M4 NASA and H. Richer, University of British Columbia

Luminosity: 100 Watt light bulb, seen from 239,000 miles away 8 days exposure time over 67-day period Hubble Space Telescope 5,600 light years away

Spectrum of the cool white dwarf WD0346+246

S. T. Hodgkin, B. R. Oppenheimer, N. C. Hambly, R. F. Jameson, S. J. Smartt, and I. A. Steele, Nature, 403, 57-59 (2000).

Preliminary Spectral Modeling of SDSS 1337+00

H. C. Harris, B. M. S. Hansen, J. Liebert, D. E. Vanden Berk, S. F. Anderson, G. R. Knapp, X. Fan, B. Margon, J. A. Munn, R. C. Nichol, J. R. Pier, D. P. Schneider, J. A. Smith, D. E. Winget, D. G. York, J. E. Anderson, Jr., J. Brinkmann, S. Burles, B. Chen, A. J. Connolly, I. Csabai, J. A. Frieman, J. E. Gunn, G. S. Hennessy, R. B. Hindsley, Ž. Ivezić, S. Kent, D. Q. Lamb, R. H. Lupton, H. J. Newberg, D. J. Schlegel, S. Smee, M. A. Strauss, A. R. Thakar, A. Uomoto, and B. Yanny, *Astrophys. J.* 549: L109-113 (2001).

Comparison of <i>ab initio</i> calculations of the collision-induced dipole of $H_2 \cdots He$								
	Computational method	Basis sets	Intermolecular separations	Bond lengths	Relative orientations	Properties computed		
Meyer and Frommhold (1986)	SCEP	H: [3s 1p] H2 center: (3s 2p 2d) He: [6s 3p1d]	7	3	3	μ		
Gustafsson, Frommhold, and Meyer (2000)	MRCI	H: (9s 3p) H2 center: (2s 3p 3d 2f) He: (9s 4p 3d 2f)	10	5	4	μ		
Haskopoulos and Maroulis (2010)	MP2, CCSD	H: [6s, 4p, 3d] He: [6s 4p 3d] H: [6s 4p 3d 1f] He: [6s 4p 3d 1f] H: (14s 9p 5d) He: (12s 9p 5d)	13	1	3	μ, Δα, β		
This work	CCSD(T)	H and He: aug-cc-pV5Z (spdfg) (9s 5p 4d 3f 2g)/ [6s 5p 4d 3f 2g] 240 functions	15	8	19	μ		

Expansion of the collision-induced dipole in spherical harmonics

1) Convert Cartesian components of the dipole to spherical-tensor components

2) Find coefficients for series expansion of the collision-induced dipole moment

$$\mu_{M}(\mathbf{r}, \mathbf{R}) = 4\pi/3^{1/2} \sum_{\lambda, L, m} D_{\lambda L}(\mathbf{r}, \mathbf{R}) Y_{\lambda}^{m}(\mathbf{\hat{r}}) Y_{L}^{M-m}(\mathbf{\hat{R}}) \langle \lambda L m M - m | 1 M \rangle$$

$D_{\lambda L}(r, R)$: Dipole expansion coefficients

 $Y_{\lambda}^{m}(\hat{\mathbf{r}})$: Spherical harmonics of the H₂ orientation $Y_{L}^{M-m}(\hat{\mathbf{R}})$: Spherical harmonics of the orientation of the intermolecular vector \mathbf{R} $\langle \lambda L m M-m | 1 M \rangle$: Clebsch-Gordan coefficients

Advantages:

Separates out different polarization mechanisms into different coefficients Ties directly to rotational selection rules, Δj goes up to $\pm \lambda$ for $D_{\lambda L}(r, R)$ component

Spherical Dipole Coefficients for $H_2 \cdot \cdot \cdot He$

Bond length of $H_2 = 1.449$ a.u.

D _{nm} ·10 ⁶			R							
n	m	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0	10.0
0 2	1 1	-471155 139471	-126781 29280	-31034 5701	-6444 1017	-1077 158	-122 18	10 1	15 0	7 -1
2	3	-87454	-26898	-7781	-2567	-1035	-509	-289	-179	-117
4	3	6527	2311	450	81	15	3	0	0	0
4	5	-2871	-1614	-386	-96	-28	-10	-4	-2	-1
6	5	-127	94	17	3	0	-1			
6	7	52	-63	-15	-4	-2	-1			
8	7	-24	2	0						
8	9	-4	-1	-1						
10	9	-2	1							
10	11	-2	1							
12	11	-1								
12	13	-1								
14	13	-1								

Spherical Dipole Coefficients for H₂ · · · He

 $H_2 \cdots He$ separation R = 3.0 a.u.

Dr	_{1m} •10 ⁶				r(H ₂)	in a.u.				
n	m	0.942	1.111	1.280	1.449	1.787	2.125	2.463	2.801	
0	1	-59053	-79092	-101720	-126781	-183143	-244943	-307098	-363451	
2	1	8079	13181	20162	29280	54523	88783	129269	171526	
2	3	-9192	-13705	-19535	-26898	-47171	-76460	-116602	-169003	
4	3	298	647	1274	2311	6299	14242	28037	49554	
4	5	-249	-506	-938	-1614	-4087	-8948	-17826	-33373	
6	5	7	17	41	94	381	1238	3470	8737	
6	7	-2	-11	-29	-63	-225	-644	-1616	-3785	
8	7	1	1	1	2	11	54	232	867	
8	9	1			-1	-7	-21	-27	45	
10	9	1	1		1	-1	-2	-16	-68	
10	11				1		3	20	139	
12	11				1		-3	-11	-70	
12	13						-1	4	37	
14	13	-2					1		-8	
14	15	2					1	-1	1	

For r = 2.801 a.u., we continue to find large values of D_{nm} through (at least) n = 24, m = 23

Meyer and Frommhold (1986)

◆ ◆ ◆ Gustafsson, Frommhold, and Meyer (2000)

▲ ▲ ▲ ▲ Li, Mandal, Miliordos, Hunt, Abel, Frommhold (2010)

Multipoles Acting as Field Sources

Classical induction terms in the dipole coefficients

Atom A interacting with diatomic molecule B, **R** runs from the center of the molecule to the atom

$$\begin{split} \mathsf{D}_{01} &= (6/5) \, \left(\alpha^{\mathsf{B}}_{zz} - \alpha^{\mathsf{B}}_{xx} \right) \alpha^{\mathsf{A}} \, \Theta^{\mathsf{B}} \, \mathsf{R}^{-7} \\ \mathsf{D}_{21} &= -3 \, \left(2^{1/2}/5 \right) \, \left(2 \, \alpha^{\mathsf{B}}_{zz} + \alpha^{\mathsf{B}}_{xx} \right) \alpha^{\mathsf{A}} \, \Theta^{\mathsf{B}} \, \mathsf{R}^{-7} \\ \mathsf{D}_{23} &= 3^{1/2} \, \alpha^{\mathsf{A}} \, \Theta^{\mathsf{B}} \, \mathsf{R}^{-4} + 4 \, \left(3^{1/2}/35 \right) \, \left(3 \, \alpha^{\mathsf{B}}_{zz} + 4 \, \alpha^{\mathsf{B}}_{xx} \right) \alpha^{\mathsf{A}} \, \Theta^{\mathsf{B}} \, \mathsf{R}^{-7} \\ \mathsf{D}_{43} &= -24/35 \, \left(\alpha^{\mathsf{B}}_{zz} - \alpha^{\mathsf{B}}_{xx} \right) \alpha^{\mathsf{A}} \, \Theta^{\mathsf{B}} \, \mathsf{R}^{-7} \\ \mathsf{D}_{45} &= 5^{1/2} \, \alpha^{\mathsf{A}} \, \Phi^{\mathsf{B}} \, \mathsf{R}^{-6} \end{split}$$

Quadrupolar induction: $\alpha^{A} \Theta^{B}$ term varies as R⁻⁴ Hexadecapolar induction: $\alpha^{A} \Phi^{B}$ term varies as R⁻⁶ Remaining terms come from back-induction and vary as R⁻⁷

Quadrupole and hexadecapole moments vs. bond length

THE FEYNMAN "CONJECTURE"

NO OPDINAPY GENIUS THE ILLUSTRATED RICHARD FEYNMAN

CHRISTOPHER SYKES

Dispersion energy depends on linear response, but dispersion dipole depends on nonlinear response?

Centrosymmetric molecules: Dispersion energy depends on u states, but dispersion dipole depends on g and u states?

Noncentrosymmetric molecules: Dispersion energy varies as R^{-6} Dispersion force varies as R^{-7} Dispersion dipole varies as R^{-6}

The *origin* of dispersion forces should not depend on molecular symmetry.

Explanation

Derivative of the susceptibility with respect to a nuclear coordinate depends on the density of the nonlinear response of the next higher order

 $\partial \alpha / \partial R^{K}$ depends on $\beta(\mathbf{r}, \mathbf{r}', \mathbf{r}'')$ E^{disp} depends on $\alpha, \therefore F^{disp}$ depends on β

Distance dependence of dispersion forces

Force on an individual nucleus: R^{-6} Force on the center of mass: R^{-7}

Dispersion terms in the dipole coefficients

$$\mathsf{D}_{01} = (9\hbar/\pi) \,\mathsf{R}^{-7} \int_0^\infty \left[\alpha^\mathsf{A}(i\omega) \,\mathsf{B}^\mathsf{B}_0(0,i\omega) - \overline{\alpha}^\mathsf{B}(i\omega) \,\mathsf{B}^\mathsf{A}(0,i\omega) \right] \,\mathsf{d}\omega$$

$$D_{21} = -3\hbar/(5\ 2^{1/2}\ \pi)\ R^{-7} \int_0^\infty \left\{4\ \alpha^A(i\omega)\ B^B_{\ 2a}(0,i\omega) - \left[\alpha^B_{\ xx}(i\omega)\right]\ B^A(0,i\omega)\right\}\ d\omega$$

$$D_{23} = (4 \ 3^{1/2} \hbar/\pi) \ \mathsf{R}^{-7} \int_0^\infty \{2 \alpha^\mathsf{A}(i\omega) \ \mathsf{B}^\mathsf{B}_{2b}(0,i\omega) - \alpha^\mathsf{B}_{xx}(i\omega)\} \ \mathsf{B}^\mathsf{A}(0,i\omega)\} \ \mathsf{d}\omega$$

$$D_{43} = (-16\hbar/\pi) R^{-7} \int_0^\infty [\alpha^A(i\omega) B^B_4(0,i\omega)] d\omega$$

B(0,i ω) denotes the dipole-dipole quadrupole hyperpolarizability Integrals have been evaluated with high accuracy by D. M. Bishop and J. Pipin, for H₂ · · · He, with B components of ranks 0, 2, and 4

Dispersion contributions to the dipole moment

Equations: J. E. Bohr and K. L. C. Hunt, *J. Chem. Phys.* **86**, 5441 (1987). Accurate numerical values: D. M. Bishop and J. Pipin, *J. Chem. Phys.* **98**, 4003 (1993).

Dispersion dipole coefficients for H₂-He:

 $D_{01}{}^{d} = -86.87 R^{-7}$ $D_{21}{}^{d} = 12.91 R^{-7}$ $D_{23}{}^{d} = 0.23 R^{-7}$ $D_{43}{}^{d} = 0.06 R^{-7}$

Classical induction contribution:

$$D_{43}^{\ b} = (6/5) (\alpha^{B}_{\ zz} - \alpha^{B}_{\ xx}) \alpha^{A} \Theta^{B} R^{-7}$$

Polarizabilities and permanent quadrupole of H2 at r = 1.449 a.u.

 $\Theta^{B} = 0.4828 \text{ a.u.}$ $\alpha^{B}_{zz} - \alpha^{B}_{xx} = 1.9793 \text{ a.u.}$ $\alpha^{A} = 1.383192 \text{ a.u.}$

Resulting value for D_{01} : -85.28 R^{-7}

Can we see this in the *ab initio* results?

Dipole coefficient D(01)

Dipole coefficient D(01)

Experimental Results

Binary, collision-induced spectra of H₂-He pairs

- 1) Rototranslational band (195 K, 295 K)
- 2) Fundamental vibrational band (298 K)
- Calculated spectra including overtone bands (300 K-9000 K)

x G. Birnbaum, G. Bachet, and L. Frommhold, Phys. Rev. A 36, 3729 (1987).

Fundamental Vibrational Band in the $H_2 \cdot \cdot \cdot He$ Spectrum

Theory: Solid lines from Abel, Frommhold, Li, and Hunt (2010).

Experiment: Red trace with noise, C. Brodbeck, Nguyen-van-Thanh, J. P. Bouanich, and L. Frommhold, *Phys. Rev. A* **51**, 1209 (1995).

- T = 298 K, G. Birnbaum, A. Borysow, and G. S. Orton, *Icarus* 123, 4 (1996).
- T = 195 K, J. L. Hunt and H. L. Welsh, *Can. J. Phys.* **42**, 873 (1964).
- T = 195 K, S. P. Reddy, in *Phenomena Induced by Intermolecular Interactions*, edited by G. Birnbaum (Plenum, New York, 1985), pp. 129-168.

Calculations for temperatures from 300 K to 9000 K, from Abel, Frommhold, Li, and Hunt (2010).

Research Group and Collaborators

Prof. Lothar Frommhold, UT, Austin

Prof. Magnus Gustafsson, Gothenburg

Prof James F. Harrison, MSU

Acknowledgments

National Science Foundation CHE-9817297, CHE-9974834, AST-0708496 to KLCH

National Science Foundation AST-0709106 to LF

National Natural Science Foundation of China NSFC-10804008 to FW